LRC Partner Visit to California Energy Commission April 8, 2003

LED Research Update

LED Performance

Goal:

To benchmark LED performance

High-Flux LEDS – Parameters considered

```
Light Output
     Total flux per package
     Efficacy
     Dimming effects
     Lumen maintenance and life
Color
     CRI, SPD
     CCT
     CIE x,y
          Between devices
          With temperature
          Over time
```


High-Flux LEDs – Commercial Products

LumiLeds

Red, Green, Blue, and White Luxeon LEDs

OSRAM OPTO

White (available: Late 2003)

Optotechnologies White

Nichia

White (available: Mid 2003)

Light Output and Efficacy

Flux per package 18 lm
Efficacy 16 lm/W

- ◆ Light output 27 degree
- ♦ Light output 27 degree w/o heat sink

- Efficacy 27 degree
- ♦ Efficacy 27 degree w/o heak sink

Warm-up Characteristics

Impact of Using Heat Sink

Color Variations

LED Life Test Variables

Relative light output as a function of time

- Two Temperature
- Two Drive Current

- Light Degradation
- Color Shift
- Power Consumption

LED Life Test Setup

LED Life Test Setup

Estimating LED Life – Alternate method

Goal:

To identify a fast and easy way to estimate LED degradation rate.

Initial study with AlGaInP LEDs

Cause for LED Degradation

Heat at the junction is one of the primary causes of LED degradation.

$$T_j = f(P_J, T_a, \theta)$$

 P_i = Power dissipated at the junction (V . I)

Ta = Ambient temperature

 θ = Thermal resistance coefficient (°C/W)

Estimating Junction Temperature

As junction temperature increases, the peak wavelength of AlGaInP LEDs shifts proportionally to the longer wavelengths.

Red LED

Peak λ vs Junction Temperature

Work in progress

Link spectral shift to LED Life.

 Develop similar methods to estimate junction temperature of other LED materials (such as GaN).

LEDs for Back Lighted Signs

Back Lighted Signs

Current practice:

Neon

Cold-cathode fluorescent

Potential new source LED

Back Lighted Signs

Presently LEDs are more energy efficient than neon only in certain colors.

Other Activities

Low Profile Luminaires - CEC

Field Studies

Supermarket refrigerators – NYSERDA

Display window – LA Water and Power Dept.

CEC - Low Profile Luminaires

Objectives

- Develop two types of low profile prototype LED luminaires that
 - Shows promise of decreasing energy use for application by up to 20%
 - Takes advantage of full range dimming control of LEDs (manual dimming, load shed, daylighting)

Objectives

Typical Expected Applications

- Under cabinet lighting
- Retail display lighting
- Elevator lighting
- ◆ Task Lighting

Under-cabinet lighting

Elevator lighting

Tasks and deadlines

Tasks	Deadline	
1. LED Evaluation and Light Source Specification Development	Feb/March 2003	
2. Development of Ballast/Control System Specification	May 2003	
3. Analysis of Application Design	June 2003	
4. Optical Design and Modeling	Jan 2004	
5. Gain Input from Luminaire Manufacturers & Lighting Designers	Feb 2004	

Tasks and deadlines

Tasks	Deadline	
6. Refine, Build and Test Prototypes	June 2004	
7. Technology Transfer Activities	Aug 2004	
8. Production Readiness Plan	Sep 2004	
9. Monthly Progress Reports	Monthly	
10. Annual Report	Annually	
11. Final Report	Oct 2004	

Task 1:

Evaluation and Light Source Specification Development

Evaluation of LEDs available in the market based on

- Color Properties
- Lumen output and efficacy
- Thermal Management
- Light Distribution
- Controllability

5mm LEDs

Emitter (high flux LEDs)

LED packages

- Conclusion
 - High flux LEDs will be most appropriate for the low profile luminaire applications
 - Type of LEDs (Phosphor or RGB based) yet to be decided

Based on the selection, detailed specification of the LEDs will be done.

Task 2:

Development of Ballast/Control System

Specification

List of drivers (ballast/control system) available in the market

- Commercially available
- Custom drivers

Evaluation of drivers in progress

Commercially available driver

Customized driver

Task 3: Analysis of Application Design

List of Potential applications

- Task lighting Desktop luminaire application
- Under cabinet lighting Kitchen application
- In-shelf lighting for shelves, cupboards and wardrobes
- Cove lighting
- Step lighting
- Refrigerated display case lighting
- Elevator down lighting
- Miniature track lighting display applications

Evaluation criteria for applications

Task	Horizontal Illuminance (lux)	Vertical Illuminance (lux)	CCT (K)	CRI	Typical source	Lumens/ fixture (lm)	Energy (W)
Under- cabinet	500	100	3000- 6500	75	Fluorescents, halogens	800-2100	30-100
Elevator	50	30	2800- 3500	80	PAR, MR halogens, Fluorescents	800-2100	30-60
Retail Display	1000	300	2800- 3500	85	PAR, MR halogens	500-1000	30-75
Task lighting	300	30	2800- 3500	80	Incandescent, fluorescent	800-1100	15-75

Low Profile Luminaire Experimental Prototype

